English

学术动态

Academic


ITI 论文推荐 | 基于3D点云数据的岩体参数自动提取的研究综述


2023年05月30日 21:18



本期推文-中文简介


基于3D点云数据的岩体参数自动提取的研究综述


陈佳耀1, 2,房倩1, 2,张顶立1, 2,黄宏伟3, 4


1. 北京交通大学 土木建筑工程学院,北京,100044;
2. 城市地下工程教育部重点实验室,北京,100044;
3. 同济大学 土木工程学院,上海,200092;
4. 岩土及地下工程教育部重点实验室,上海,200092;

摘要

文对基于三维点云数据自动提取岩体参数的技术进行了关键综述。准确获取岩体数据和精细表征岩体参数对于避免人员伤害和财产损失至关重要,因此这一研究是岩土工程领域面临的重大挑战和问题。首先,我们系统归类总结了点云信息获取和结构信息提取的方法,并分析了现有方法的优缺点。在此基础上,提出了相关技术的未来发展方向,以提高岩体三维信息获取和关键信息提取水平。研究结果表明,岩体点云信息获取技术可以分为激光点云获取和基于运动结构(Structure from MotionSfM)算法的图像重建两种类型。岩体结构信息包括岩体结构面及其倾角、岩体迹线及其几何参数以及其他岩体参数,如结构面粗糙度、间距和块状特征等。不同的获取技术和特征提取方法各有优势、缺点和适用范围。在实践中,应根据具体的工程特点和现有数据情况综合选择适当的评估方法。通过本研究,可以为岩土工程领域的相关工作提供重要的参考和指导。



关键词

  • 三维点云
  • 岩体参数
  • 点云信息获取
  • 结构面信息
  • 自动化提取



下载地址
https://academic.oup.com/iti/advance-article/doi/10.1093/iti/liad005/7176333?searchresult=1

图片



亮点与创新点

1. 系统总结了岩体点云信息获取和结构信息提取方法;

2. 分析了各种结构面表征方法的优缺点,分析了各类技术的发展;

3. 综述了岩体迹线获取的四类主要方法,剖析了各自方法的优劣势;

4. 分析了岩体粗糙度、间距和块状特征等参数的意义,提出了未来研究建议;

5. 强调了多源数据和技术融合的大趋势,及人工智能技术在岩体信息表征的广阔前景。

图片
图1 基于SfM技术的岩体数据获取和三维重构应用

图片
图2 不同提取非连通结构面方法的比较:(a)-(c)基于机器学习的聚类算法;(d)-(e)平面拟合算法

图片
图3 基于四种定义的迹线提取效果:(a) 结构面交线定义;(b) 曲率法定义;(c) 手动交互标记定义;(d) 监督学习

图片
图4 建立岩体块状模型的典型方法和过程示意图

图片


本期推文-英文介绍


A critical review of automated extraction of rock mass parameters using 3D point cloud data


Jiayao Chen, Qian Fang, Dingli Zhang, Hongwei Huang


https://doi.org/10.1093/iti/liad005

Abstract

In this paper, we provide a comprehensive survey of existing hybrid physics-based ML methods for TSE problem. This survey leads us to uncover inherent challenges and gaps in the current state of research. The results have profound implications for evaluating the applicability of hybrid physics-based ML TSE methods and identifying future research directions.In this paper, a critical review is conducted to understand the current research status of the quantification technology for obtaining three-dimensional (3D) point cloud information of rock mass and extracting structural key information, which is a major challenge and problem facing rock engineering. The timely and accurate acquisition of rock mass data and fine characterization of rock mass parameters can avoid unnecessary personnel injury and property damage. Firstly, the methods of point cloud information acquisition and structural information extraction are systematically summarized and classified. Then, various existing methods are analysed for their advantages and disadvantages. Based on this analysis, the future development direction of relevant technologies is proposed to improve the level of acquisition of 3D information of rock mass and the level of extraction of key information of rock mass. The results indicate that rock mass point cloud information acquisition technology can be classified into two types: laser point cloud acquisition and image reconstruction based on Structure from Motion (SfM) algorithm. Rock mass structural information can be classified into rock mass structural planes and their attitudes, rock mass traces and their geometric parameters, and other rock mass parameters, including structural plane roughness, spacing, and block characteristics, etc. Different acquisition technologies and feature extraction methods have their own advantages, disadvantages, and applicable ranges. Therefore, a comprehensive selection of various evaluation methods should be made based on specific engineering characteristics and existing data situations in practice.


Keywords
  • feature extraction
  • Rock mass characteristics
  • Rock Discontinuity
  • 3D point cloud
  • Rock mass

图片

-组织信息-


内容组织:何庆 吕涛
内容修订:邓亚杰

图片

期刊简介


图片

Online ISSN: 2752-9991

Editors-in-Chief:

Ping Wang & Yi-Qing Ni


ITI是由西南交通大学和牛津大学出版社联合创办的英文国际学术期刊。杜彦良院士、郑健龙院士和Richard Bathurst院士任期刊荣誉主编,西南交通大学王平教授和香港理工大学倪一清教授任共同主编。

ITI着力于为人工智能研究领域和交通基础设施工程架设科研桥梁,主题包括但不限于以下交通基础设施相关方向:绿色、智能设计与建造、检测、在线监测和无损评估、养护维修、韧性研究、运维决策与管理、工程地质与生态地质。所有文章以开放获取形式免费在线发表。

官方主页:

https://academic.oup.com/iti

投稿主页:

https://mc.manuscriptcentral.com/iti